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INTRODUCTION

Integro-differential equations of various type and kinds play an important role in many
branches of mathematics. Over the past thirty years substantial progress has been made in
developing innovative approximate solutions techniques to a large class of integro-differential
equation. In recent years, integro-differential equations arise in many problems of
mathematical physics [1,2,9,10,11,12,13], such as the theory of elasticity, visco elasticity, or
hydrodynamics. Many real-life problems that have, in the past, sometimes for differential
equations actually involve a significant memory effect that can be represented in a more
refined model, using a differential equation incorporating retarded or delay arguments [6,7,8
14,15,16,17,18]. The last few decades have seen an expanding interest in problems variously
classified as retarded differential equations, or neutral delay differential equations. (Stochastic,
whose basic numerical are addressed in [3,4,5,19,20,21,22,]). Among the application areas are
the biosciences, economics, materials science, medicine, public health, and robotfics, in a
number of these there is an underlying problem in control theory [23,24,25,26,27,28]. In this
paper, we intend to study the existence, uniqueness and stability solufion for the following
Volterra integro-differential equations with retarded argument and symmetric matrices:

X~ Mt FO + (620, 1~ D,y(0, Y(E = 1)) "
r
= By + g(0) + m(e,x(0), x(c ~ 1), Y0, ¥(¢ — ), 0)

where £(t) = f,(©) + tF (), andg(t) = g, (t) + tPg,(©) . =1 —«,
O<ax<l.
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Let

v(t) = f Mx(S,JC(S),X(S —h),y(s),y(s — h))ds
—w (t —5)2

and

w@ = [ (5, x(5), x5 = 1,90, s = W)ds
_o(t—25)%

Also 4 = (Aij) and B = (Bij) are non-negative matrices.

The vector functions n(t,x,y,z,w,v) and m(t,x,y,z,w,u) is defined and continuous on the
domains:

(t,x,y,z,w,v) ER* XD X D; XD, X D3 X D, } @

(t,x,y,z,w,u) € R* x D X D; X D, X D3 X D,

Where D, D,, D,, D;are closed and bounded domains subsets of Euclidean space R™ and D, D,
are bounded domains subset of the Euclidean space R™.

Suppose that the vector functions n(t, x,y, z, w, v)and m(t, x, y, z, w,u) safisfy the following i
nequalities:
”n(t, X1,Y1,Z1, W1, Ul) - n(t' X2,¥2,Z2, W, 172)”
< K1||x1 - x2|| + K2||y1 - }72” + K3”21 - Zz” + K4”W1 - Wz”
+ Ksllv, — v, |l NE)

”m(t,xl,yl,zl,wl,ul) - m(t,XZ,yz,Zz,Wz,uz)” < L1”x1 - x2|| + L2||Y1 - y2” + L3”21 _Zzll +
L4”W1 _W2” +L5||u1 —UZ” (4)

||X(t, x1.}’1.Z1,W1) - X(t, X2,Y2,27, Wz)”
< Q1”x1 —lel + Qz||y1 —}72” + Q3”21 —22”
+ Qullwy — wyll .. (5)

luCt, x1, y1, 21, wi) — 1t x5, v, 21, w)l
S]lllxl - xz” +]2“y1 _}72” +]3”21 - ZZ”

+ Jallwy —wyll . (6)
IF (¢, )l < 8,641 (7
G, )l < 5,642 . (8
IF @I = 1@ + £ LON < IA@N+ EPILON < My + TF M, e
gl = llg: @ + t# g, @O < g O + NEIF g2 (DNl < Ny + TP N, - (10)

where

AN <ML 1LON <M, NlgiONl < Ny llg Ol < N,

Also
In(t,x,y,z,w,v)|| <M, |Im(t,x,y,z,w,wll <N . (11
Xt x,y, 2z W) || < M3, llu(t, x,y,z,w)ll < N3 - (12)

For all ¢ € Rl,x,xl,xZ € D,y,yl,yz € Dl,lel,Zz € Dz,W,Wl,WZ € D3Ond v,v1,V; € D,,Ond U,uq, Uy € Du
where M, M;, My, Ms, N, Ny, Ny, Ns, Ky, Ky, K3, Ko, Ks, Ly, Ly, L3, Ly, Ls.

01, 05,03,04,]1, ]2, J;and ], are positive constants.

1JISCS | 43



and

|e4E=9)|| < &, . (13)
|eB&9)| < 6, . (14)
where §,,68,, ;and §,are positive constants, .= max|.|.

t

We define the non-empty sets as follows:-

Dy =D = &5T[(M, + TPM,) + M]
D; = D; — 85(T — W)[(M, + TPM,) + M]
Dy = Dy = 8,T[(N, + T#N,) + N]
Dy, = D3 = 8,(T = W[(N, + TAN,) + N|

.. (15)

Furthermore, we suppose that the largest eigen-value of the matrix

TE, TE, TE; TE, does not exceed unity
A= To, T, Toz To,
(T—h)E; (T—h)E, (T—h)E; (T-h)E,
(T-h)e, (T—hg, (T -—hes (T -h)e,

llll + l[’lz - 44’2
2

Amax (D) = <1 .. (16)

where ¢, =TE, + Tg, + (T — h)E; + (T — h) @,

Y, =TE, (T — h)g, + T?E1¢; + T, (T —h)E; + (T — h)2E3p4 + (T — h)?@3 E4 + (T —h)E,Tos
— T (T —h)E, — (T —h)p,TE,

61 61
Ey = 83K + 63KsQ1 55— AT = 03Ky + 63K50Q4 55— AT
8,
@1 = 64Ly + 84Ls]y 57— 20,74’ =064Ly + 684Ls), 5 27, T“
= 6,4L3 + 84Ls]s i Ta,(P4 =64Ly + O4ls]y 21 T"

We define the sequence of functions {x; (t), y; (t)};>,0n the domains (2) by the following:-

X401 =xo + fo eAt=9)[ f(s)
+n(s,x;(s), x;(s — h),y;(s), y: (s
B h)’J Hs.0 Xz, %,(0), %, (T — R, y,(@), 5, (=
o (s —17)2
— h))dr)ds] (17

with

x(t) = x5, i=01,2,...

Vs (®) =y + foteB(t‘S)[g(s)
+m(s,x;(s), x;(s — h), y,(s),y; (s
—h), f (G(_S T))a u(z,x,(0), %t — h), y,(0), v (x
_ h))dr)ds] .. (18)
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with
Yo(®) =yp. i =012, ...
2.0 EXISTENCE SOLUTION OF 1.

In this section, we prove the existence theorem of Volterra integro-differential equation (1)
by using Picard approximation method.

Theorem1. Let the vector functions n(t,x,y,z w,v)and m(t, x, y, z,w,u)are defined continuous
on the domain (2) satisfy the inequalities (3) to (14) and condition (15). Then there exist
sequences of functions (17) and (18) convergent uniformly on the domain:

(t,x,) € R* x D, }

.. (19)
(t,yo) €RY XD,

to the limit vector function (x(t))WhiCh satisfy the following integral equations:
y(®)

x(6) = xo + j A £(s)

0
+n(s,x(s),x(s = h), y(s), y(s

—h), f (F(S 2 X(T x(1), x(t — h),y(r),y(r—h))dr)ds] ..(20)

y(®) =yo + fo eB=Ig(s)
+ m(s,x(s),x(s — h),y(s),y(s
G
—h), f LD T) u(t,x(@),x(t — h), y(0),y(z

— h))drt)ds] .. (21)

which is a solution of(1), provided that

lx,(6) = x|l < 85T[(M, + TFM,) + M]} . 22)

lyi(t) = yoll < 8,T[(N, + TEN,) + N]

and

lx (&) — x; (Ol g ay-1
<||y(t)—yi(t)||)SA(E IVt - (23)

Proof. By mathematical induction, we can prove that:

lx, () — xoll < 8T[(M, +TFM,) +M]} . (24)

ly; () = yoll < 54T[(N1 + TBNZ) + N]
Therefore «;(t) € D,y;(t) € D;,t € [0,T],x, € D,,, Vo € Dy i = 1,2, ..

And also by mathematical induction, we get
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lbei(t = 1) = xol < 85T = W[[(M, + T M) +M]]} 25)
lyi(t = 1) = yoll < 6T = B[N, + T#N,) + N]]

Therefore x;(t —h) € D;,y;(t —h) € D;,t € [0,T],xy € D;;, yo € D, i = 1,2, ...

Next, we shall prove that sequences of functions (17)and (18)convergent uniformly on the
domain(2).

By mathematical induction, we can prove that:

|41 (2) — x; (Ol
< TE;|lx;(t) — x;_1 (Ol + TE,||x;(t — h) — x;_1(t — h)||

+ TEs|ly:(t) — yi—1 (Ol
+ TE4|ly;(t — h)

—yi-1(t =Wl .. (26)

and

lyir:(8) — y: (Ol
< Tqllx () — x; 1 (O + T2 llx; (€ = h) — x; 1 (t — B
+Tosllyi(6) —yi- (Ol
+ To4lly:(t —h) — yi—1 (€ = DI -~ (27)

Also
241 (¢ — h) — x;(t — R)|
< (T—-h)E||lx;(t) — xi—1 (DIl + (T — W) E;[|x;(t — h) — x;_1(t — A)||
+ (T = ) Es|ly;(6) — yi—1 (O]
+ (T = D E4|ly;(t —h) — yi_1 (t — Dl .. (28)
and
lyi+1(t —h) — y:i(t — Bl
< (T —hellx @) —xi1 O + (T — ), |lx; (€ — h) — x;—1(t — B
+ (T — ) gslly(©) = yi—1 (Ol
+ (T — W @ullyi(t — h) — yi_1 (E — M| - (29)

Rewriting inequalities (26), (27), (28) and (29) by vector form, we get

Q101 (8) < A ..(30)

lx; 1 (8) = x: (O

Qiy1 = ||yi+1(t) - yi(t)ll
||xi+1(t — h) - xi(t — h)”
lyis1(t —h) —y: (¢ = W)l

llx;(®) = x;_1 (@)l

Q= lly; () = i, @Ol
lloc; (t — h) — x;_1(t = R)II
ly;(t —h) —y;_1(t =Wl

and
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tE, tE, tE; tE,

AQt) = tor lo, tos Lo,
(t—h)E; (t—h)E, (t—h)E; (t—h)E,
(t=h)g, (t—h)g, (t—he; (t-h)e,

Now, we take the maximal value for the both sides of the inequalities (30) we get
Qg <AL - (31)

where A = max A(t) -
te[0,T]

By repetition(35), we find that
Qi1 < ANy .. 32)

where q - <53T[(M1 +TEM,) + M])
8,T[(N, + TFN,) + N]

1=

Hence

i
Zﬂl < ZA1-191 ..(33)
=1

i
=1

By using (16),then the sequence (33)is uniformly convergent that is

lim > A1, = ZAl-lgl = (E - N)'Q, (34
=1 =1

Let

(O _ (x(@)

lim (yi(t)> - (y(t)) - (35)

Since the sequence of functions (17) and (18) are define and continuous in the domain (2)
then the limiting vector function

(x(t)) is also defined and continuous on the same domain, hence the vector function (x(t))is

y(t)/ y(t)
a solution of (1).
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UNIQUENESS SOLUTION OF (1).

In this section, we prove the uniqueness theorem of Volterra integro-differential equation
(1) by using the same method in section(ii).

Theorem 2. With the hypotheses and all conditions and inequalities of the theorem 1, then

the solution (;8>|s a unigue on the domain (2).

x*(8)

Proof. Lef( .
y(®)

)be another solution of (1).

where

X'(6) = xq + jo A9 f(5)
+n(s, x*(s),x (S —h),y"(s),y"(s
F(s
—h), f X(r,x*(r),x*(r —h),y(0),y"(z
- h))dr)ds .. (36)

and

V() = yo + f P g(s)
0
O LT CEAC
G(s
)f ) (e (@1 (0 — B,y (D" (x
- h))dr)ds e (37)

Taking
llx(®) —x* (D) < f || [Kyllx(s) — x" ()1l + Kzllx(s —h) —x"(s =)l + Kzlly(s) —y* (s)l
0
+Klly(s —h) = y"(s = Wl + Ks o—= o T“ [Q1llx(s) = x" ()l + Q2llx(s = ) — x(s — h) |
+ Q3lly(s) = y" (Il + Qully(s = h) —y*(s — W)ll]]ds

Therefore

lx(®) = x* (Ol < TE;||lx(¢) = x* (Ol + TE; ||lx(¢ = h) —x"(t = Wl + TE3|ly(®) — y* (Ol
+TE|lyt —h) —y"(t = hl - (38)

Now similarly

ly(@®) —y* Ol < Toqllx(@) —x" (Ol + T2 llx(t — k) — x*(t = Bl + Toslly(@®) —y* @)l
+ Toully(t —h) —y (¢ — Bl .. (39)

Also
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llx(t = h) —x* (¢ = Wl
< (T =mElx@) —x" Ol + (T = WE|lx(E = h) —x* (¢ = Wl + (T — WEs|ly(®) — y* @)l
+ (T —RElly(t —h) —y"(t — Wl - (40)

And

ly(t—h) —y*(t = D

t—h
< f [|e#C| [Lyl1x(s) = x" ()| + Lallx(s = h) = x7(s = W) + Lz lly(s) = y* ()
0

1
+ Lally(s =h) =y"(s = W)l + Ls ﬁ Uillx(s) = x* (Il + J2llx(s = h) = x*(s = Bl

+Illy(s) = y* (Ol + Jally(s = ) = y*(s = W)[1]ds
ly(t =h) —=y*(t =Ml
S (T =W llx(®) = x* (Ol + (T = D)@, llx(t —h) —x"(t = Wl + (T = Bgslly®) —y* (O]

+ (T — R)ully(t —h) —y*(t — bl . (41)
Then we can rewrite the inequalities (38), (39), (40) and (41) by the vector form: -
lx () — x* (Ol [lx () — x* (Ol
lly@® —y @Il ly@® —y @Il
<||x(t Zhy—x(e- h)u) = A(nx(t Zhy—x(e - h)n) - (42)
ly(t—h) =yt =Ml ly—h) =y (t—mll

Then by the condition (16), we find that

lx() — x* ()|l llx(t) — x* (Ol
ly@ —y @l < ly@ —y @Il
lx(t —h) —x"(t — bl lx(t —h) —x*(t — bl
lly(t —h) =yt — Rl ly(t—=h) =yt - Rl
This is contradiction, then

llx(®) — x* (@)l 0
ly@®) —y @l Slo
llx(t = h) — x*(t = R)I| 0

ly(t —h) =yt =Ml 0

Therefore,

x(t) x*(t)
< y(®) > _ ( Y (0) )
x(t—h) x*(t — h)
y(t —h) y (t—h)

And hence the solutions (

x(t)

y(t))is a unique of (1).
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4.0 STABILITY SOLUTION OF(1).

In this section, we study the stability solution of the problem(1) by the following theorem:

Theorem 3. if the inequalities (3) to (14) are satisfied and (;Eg>which are another solutions of (1)
then the solutions is stable for all t = 0.
where
70 = %o + [ A F()
| + n(S,f(S),_X(S - h)' )_](S)' 37(5
S F(s—1) _ B o
R e £ CECEDEIORIC
— h))dr)ds] .. (43)
and
7O =5 + [ " g(s)
0
+ m(s, x(s),x(s — h), ¥(s),y(s
S G(s—1) B _ o
IR DEOEEDRORC
— h))dr)ds] . (44)
Proof.
6 =5l = |[xo + [ e*¢217)
0

F(s—1)

G o 2Ex@,x = ),y (@), y( =~ h)d)ds]

+n(s,x(s),x(s — h),y(s),y(s — h),f

— % - jo NI £

F(s—1) _ ~ ~ ~
G0 X(t,%(z), x(r — h), (), ¥(x — h))dr)ds]

—n(s,x(s),x(s — h),y(s), y(s — h),J

< llxo — Xoll + f [l [Kyllx(s) = )N + Kz llx(s = B) = %(s = Bl + Kslly(s) = ¥()l
0

6
+ Kully(s —=h) = y(s = W)l + K5 ﬁ [Q11lx(s) = X() + Q2llx(s — h) = X(s = W)|
+Q3lly(s) =yl + Qully(s = ) = y(s — W)ll]]ds

Therefore

lx(t) = (Ol < llxo = Xoll + T[E1 ||1x(8) — X(O)I + Ellx(t — h) — X(t = W[ + Eslly(®) = y (@)l
+ Eslly(t —h) — y(t = nl]

and according to the definition of stability[22 ] for ||x, — %, || < 6; we get

CONCLUSION

This paper provided the existence, uniqueness, and stability solution for non-linear system
of Volterra integro-differential equations with retarded argument and symmetric matrices.
Picard approximation (Successive approximation) method and Banach fixed point theorem
have been used in this study which were infroduced by [6]. Theorems on the existence and
unigueness of a solution are established under some necessary and sufficient condifions on
closed and bounded domains (compact spaces).
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